Untitled Document
Untitled Document
You may need to enable or update / install Adobe Flash Player Plug-in to display JPE e-Book in your device properly. If you use Google Chrome, please find information here
> Archives > Current Issues
JPE, Vol. 18, No. 5, September 2018
Analysis of Synchronous Rectification Discontinuous PWM for SiC MOSFET Three Phase Inverters
Peng Dai, Congcong Shi, Lei Zhang, and Jiahang Zhang
Area High Power Converters
Abstract Wide band gap semiconductor devices such as SiC MOSFETs are becoming the preferred devices for high frequency and high power density converters due to their excellent performances. However, the proportion of the switching loss that accounts for the whole inverter loss is growing along with an increase of the switching frequency. In view of the third quadrant working characteristics of a SiC MOSFET, synchronous rectification discontinuous pulse-width modulation is proposed (SRDPWM) to further reduce system losses. The SRDPWM has been analyzed in detail. Based on a frequency domain mathematical model, a quantitative mathematical analysis of the harmonic characteristic is conducted by double Fourier transform. Meanwhile, a switching loss model and a conduction loss model of inverter for SRDPWM have been built. Simulation and experimental results verify the result of the harmonic analysis of the double Fourier analysis and the accuracy of the loss models. The efficiencies of the SRDPWM and the SVPWM are compared. The result indicates that the SRDPWM has fewer losses and a higher efficiency than the SVPWM under high switching frequency and light load conditions as a result of the reduced number of switching transitions. In addition, the SRDPWM is more suitable for SiC MOSFET converters.
Keyword Double Fourier analysis,Efficiency,Harmonic,Loss model,SiC MOSFET,Synchronous rectification discontinuous pulse width modulation
Untitled Document