Untitled Document
Untitled Document
You may need to enable or update / install Adobe Flash Player Plug-in to display JPE e-Book in your device properly. If you use Google Chrome, please find information here
> Archives > Current Issues
JPE, Vol. 18, No. 2, March 2018
A Generalized Space Vector Modulation Scheme Based on a Switch Matrix for Cascaded H-Bridge Multilevel Inverters
Pratheesh K. J., Jagadanand G., and Rijil Ramchand
Area Analysis, Modeling and Control
Abstract The cascaded H Bridge (CHB) multilevel inverter (MLI) is popular among the classical MLI topologies due to its modularity and reliability. Although space vector modulation (SVM) is the most suitable modulation scheme for MLIs, it has not been used widely in industry due to the higher complexity involved in its implementation. In this paper, a simple and novel generalized SVM algorithm is proposed, which has both reduced time and space complexity. The proposed SVM involves the generalization of both the duty cycle calculation and switching sequence generation for any n-level inverter. In order to generate the gate pulses for an inverter, a generalized switch matrix (SM) for the CHB inverter is also introduced, which further simplifies the algorithm. The algorithm is tested and verified for three-phase, three-level and five-level CHB inverters in simulations and hardware implementation. A comparison of the proposed method with existing SVM schemes shows the superiority of the proposed scheme.
Keyword Cascaded H bridge (CHB) inverter,Five-level inverter,Multilevel inverters (MLI),Space vector modulation (SVM),Three-level inverter
Untitled Document