Untitled Document
Untitled Document
You may need to enable or update / install Adobe Flash Player Plug-in to display JPE e-Book in your device properly. If you use Google Chrome, please find information here
> Archives > Current Issues
JPE, Vol. 17, No. 1, January 2017
A Novel Predictive Digital Controlled Sensorless PFC Converter under the Boundary Conduction Mode
Jizhe Wang, Hidenori Maruta, Motoshi Matsunaga, and Fujio Kurokawa
Area Low Power Converters
Abstract This paper presents a novel predictive digital control method for boundary conduction mode PFC converters without the need for detecting the inductor current. In the proposed method, the inductor current is predicted by analytical equations instead of being detected by a sensing-resistor. The predicted zero-crossing point of the inductor current is determined by the values of the input voltage, output voltage and predicted inductor current. Importantly, the prediction of zero-crossing point is achieved in just a single switching cycle. Therefore, the errors in predictive calculation caused by parameter variations can be compensated. The prediction of the zero-crossing point with the proposed method has been shown to have good accuracy. The proposed method also shows high stability towards variations in both the inductance and output power. Experimental results demonstrate the effectiveness of the proposed predictive digital control method for PFC converters.
Keyword Boundary conduction mode,Power factor correction,Predictive digital control,Zero-crossing point
Untitled Document